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153, Japan

Received 9 January 1997

Abstract. Using the method introduced by Grisaruet al, boundaryS-matrices for the physical
excitations of the open Hubbard chain with boundary fields are studied. In contrast to the open
supersymmetrict-J model, the boundaryS-matrix for the charge excitations depend on the
boundary fields though the boundary fields do not break the spin-SU(2) symmetry.

Recently, one-dimensional integrable modelswith boundarieshave attracted renewed
interest. Those models provide relevant information for the boundary effects on the one-
dimensional strongly correlated systems. Among others, as for the bulk case, the one-
dimensional Hubbard model with open boundary conditions (open Hubbard chain) plays an
important role in this field.

In this letter, using the method introduced by Grisaruet al [1] (see also [2]), we study
the boundaryS-matrix for quasiparticles of the open Hubbard chain with boundary fields.

Let us first recall the known facts about the (open) Hubbard chain. The Hamiltonian of
the open Hubbard chain with boundary fields is given byH(±) = H(open)

bulk +H(±)
boundary, where

H
(open)
bulk = −

L−1∑
j=1

∑
σ=↑,↓

(ψ
†
jσψj+1σ + ψ†j+1σψjσ )+ U

L∑
j=1

(nj↑ − 1/2)(nj↓ − 1/2) (1)

H
(±)
boundary= −h1(n1↑ ± n1↓)− hL(nL↑ ± nL↓). (2)

HereU is the coupling constant,hl is the boundary field at sitel ∈ {1, L}, ψjσ (respectively
ψ
†
jσ ) denotes the annihilation (respectively the creation) operator of an electron with spin

σ ∈ {↑,↓} at sitej ∈ {1, 2, . . . , L}, andnjσ = ψ†jσψjσ is the number operator.

It is well known that the bulk HamiltonianH(open)
bulk (on the bipartite lattice, i.e., with

evenL) possesses anSO(4) ∼= (SU(2)× SU(2))/Z2 symmetry [3] (see also [4]). That is,
together with the ordinary spin-SU(2) symmetry which corresponds to the spin degrees of
freedom,H(open)

bulk is also invariant under the action of the so-calledη-SU(2) algebra which
pertains to the charge degrees of freedom. The boundary HamiltonianH

(+)
boundary(respectively

H
(−)
boundary) breaks theη-SU(2) symmetry (respectively the spin-SU(2) symmetry) down to

U(1). Quasiparticle spectra of the attractive Hubbard model and those of the repulsive
Hubbard model are related by an interchange of the spin and charge degrees of freedom [5].
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Then, in what follows, we restrict attention to the HamiltonianH(+) with U > 0 (repulsive
case).

The open Hubbard chain with boundary fields has been solved by the (coordinate)
Bethe ansatz method [6–8]. The Bethe ansatz for this model provides eigenstates of the
HamiltonianH(+) which are parametrized by the two sets of roots (‘rapidities’){kj }Nj=1 and
{3γ }Mγ=1. HereN is the number of electrons andM is the number of electrons with down
spin. These roots are subject to the (nested) Bethe ansatz equations,

ei2kj (L+1)β(kj , h1)β(kj , hL) =
M∏
δ=1

(3δ − sinkj − ic/2)(3δ + sinkj + ic/2)

(3δ − sinkj + ic/2)(3δ + sinkj − ic/2)
(3)

M∏
δ=1
δ(6=γ )

(3γ −3δ − ic)(3γ +3δ − ic)

(3γ −3δ + ic)(3γ +3δ + ic)
=

N∏
j=1

(3γ − sinkj − ic/2)(3γ + sinkj − ic/2)

(3γ − sinkj + ic/2)(3γ + sinkj + ic/2)
(4)

wherej = 1, . . . , N, γ = 1, . . . ,M, and

c = U/2 (5)

β(x, h) = 1− h e−ix

1− h eix
. (6)

Note that, in this model, the solutions of the Bethe ansatz equations are restricted as
Re(kj ),Re(3γ )γ > 0 andkj ,3γ 6= 0. The energy of the model is represented as

EN = −2
N∑
j=1

coskj . (7)

Next, we shall briefly review the work of Grisaruet al [1]. In [9], Korepin gave a
general method for exactly extracting the bulkS-matrix from the Bethe ansatz equations.
Then, generalizing this method, Grisaruet al proposed the method for determining the
boundaryS-matrix from the Bethe ansatz equations, and applied this method to the open
Heisenberg chain with boundary magnetic fields [1]. Also, using this method, Essler and
coworkers [2] calculated the boundaryS-matrices for the open supersymmetrict-J model
with boundary magnetic fields and those for the open supersymmetrict-J model with an
impurity.

An essential ingredient of their method is the following quantization condition [10]
for a system of two particles, which has the internal degrees of freedom, with factorized
scattering on a line of length̃L,

e2 ip(θ1)L̃S12(θ1− θ2)K1(θ1, h1)S12(θ1+ θ2)K1(θ1, hL) = 1 (8)

where θj is the rapidity of particlej = 1, 2, andp(θ) is defined by theexpressionfor
the momentum of a particle on the corresponding periodic system. HereS12(θ1 − θ2) is
the (bulk) S-matrix for the scattering of particles 1 and 2, andK1(θ1, h) is the boundary
S-matrix of the scattering for particle 1 off a boundary with boundary fieldh. Under
appropriate conditions onS12(θ1 − θ2) andK1(θ1, h), the equation (8) is equivalent to the
following scalar equation (after taking the logarithm):

2L̃p(θ1)+ (bulk two-body phase shifts)

+(boundary phase shifts forh1 andhL) ≡ 0(mod 2π). (9)

Note that, due to the factorS12(θ1 + θ2) in equation (8), the bulk part of the phase shifts
contains the phase shifts for the scattering of particle 1 and the mirror image of particle 2.
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On the other hand, if the system is Bethe ansatz solvable, it is possible to derive another
condition onp(θ1) from the counting functionthat is defined by the Bethe ansatz equations.
Then, comparing these two conditions, the boundary phase shifts can be evaluated (up to a
rapidity independent constant) [1].

We now turn to consider the boundary scatterings of the open Hubbard chain. Since for
the open Hubbard chain it is reasonable to consider the length of the system to beL + 1,
then we putL̃ = L+ 1 in the discussions of the scatterings.

In this letter, we only consider the case with the bipartite lattice and the half-filled
band, i.e.,L even andN = L. In this case, the elementary excitations of the periodic
Hubbard Hamiltonian transform into the fundamental representations ofSO(4) [5, 11].
These elementary excitations are called spinons which carry spin but no charge and
holons/antiholons which carry charge but no spin [5, 11, 12]. The excitation spectrum can be
determined by the scattering of these elementary excitations. In [5, 11], the bulkS-matrix
for the periodic Hubbard chain has been determined by using Korepin’s method. This
S-matrix has block diagonal form with respect to the scattering of the spin excitations on
the spin excitations, the spin excitations on the charge excitations, the charge excitations on
the spin excitations and the charge excitations on the charge excitations.

For the open Hubbard chain, the bulk part of the Hamiltonian is alsoSO(4) invariant.
Thus, the elementary excitations are still spinons and holons/antiholons. However, in our
choice of Hamiltonian, theη-SU(2) symmetry is broken down toU(1). Thus the totalη-spin
is not a good quantum number. The boundaryS-matricesKspin(3, h) andKcharge(k, h)

for spin and charge excitations, respectively, have the following diagonal form, since the
HamiltonianH(+) hasU(1) × U(1) symmetry which corresponds to the preservation of
spinon and holon/antiholon numbers:

Kspin(3, h) =
(
A(3, h) 0

0 B(3, h)

)
(10)

Kcharge(k, h) =
(
C(k, h) 0

0 D(k, h)

)
. (11)

Since the boundary Hamiltonian (2) does not break the spin-SU(2) symmetry, we expect
that the boundaryS-matrix for the spin excitations is proportional to the identity matrix,
i.e., A(3) = B(3). In fact, we will confirm this fact. Also we define the corresponding
boundary phase shifts by the formulae;A(3, h) = eia(3,h), B(3, h) = eib(3,h), C(k, h) =
eic(k,h) and D(k, h) = eid(k,h). From the same argument as was given by Grisaruet al
[1], to determine the above four components, it is sufficient to analyse the highest weight
states and the lowest weight states of the spin (respectively charge) excitation withS = 1
(respectivelyη = 1). HereS (respectivelyη) denotes the total spin (respectivelyη-spin)
quantum number. Note that althoughη is not a good quantum number, when there exist
boundary fields, we call the states which becomeη = 1 states when the boundary fields
vanish,η = 1 states. Note also that, to study the scattering, we can restrict attention to the
states near the ground state, i.e., the states which have a microscopic number of holes in
the real roots.

Let us introduce counting functions for roots{kj } and{3γ } [6–8]. As mentioned above,
for later purposes, we need only the real solutions of the Bethe ansatz equations (3) and
(4). In this case, taking the logarithm of equations (3) and (4), we have

nj = zc(kj ) (12)

Iγ = zs(3γ ) (13)
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wherezc(k) andzs(3) are counting functions for roots{kj } and{3γ }, respectively;

zc(k) = 1

2π

[
2kL̃+ 1

i
lnβ(k, h1)+ 1

i
lnβ(k, hL)−

M∑
δ=−M

2(2 sink − 23δ)+2(2 sink)

]
(14)

zs(3) = 1

2π

[
−

N∑
j=−N

2(23− 2 sinkj )+
M∑

δ=−M
2(3−3δ)−2(3)

]
(15)

with 2(x) = −2 tan−1(x/c). In the above expressions, we have used the ‘doubling trick’,
that is, we have put3−δ = −3δ, k−j = −kj and30, k0 = 0. The two sequences of quantum
numbers{nj }Nj=1 and {Iγ }Mγ=1 (which we call then-sequence andI -sequence, respectively)
take integer values, and label the state of the model. Note that thenj , which are defined
modulo 2L̃, take values in the range 0< nj 6 N . Also note that, from the formula
|2(x)| 6 π , the Iγ are restricted as 0< Iγ 6 N −M(= Imax). For instance, the ground
state is characterized byM = N/2 (spin singlet) and the configurationnj = j, Iγ = γ .

We shall also introduce the densities of roots and holes. The number of allowed solutions
for the Bethe ansatz equations (3) and (4) in the intervals (k, k + dk) and (3, 3+ d3) are
expressed as̃L[ρ(k) + ρh(k)] dk and L̃[σ(3) + σ h(3)] d3. Hereρ(k) andσ(3) are the
densities of roots (filled solutions), andρh(k) andσ h(3) are the densities of holes (unfilled
solutions). These are determined by the counting functions as follows:

L̃[ρ(k)+ ρh(k)] = dzc(k)/dk (16)

L̃[σ(3)+ σ h(3)] = dzs(3)/d3. (17)

Conversely, we can determine the counting functions from the integration of the above
formulae, if we know the explicit form ofρ(k), ρh(k), σ (3) andσ h(3).

In the thermodynamic limit (̃L→∞ with N/L̃ andM/L̃ fixed), we obtain the following
formulae:

ρ(k)+ ρh(k) = 1

π
+ 2 cosk

∫ B

−B
d3σ(3)K(2 sink − 23)

+ 1

L̃π
[τ(k, h1)+ τ(k, hL)] − 2 cosk

L̃
K(2 sink) (18)

σ(3)+ σ h(3) = 2
∫ Q

−Q
dk ρ(k)K(23− 2 sink)−

∫ B

−B
d3′ σ(3′)K(3−3′)+ 1

L̃
K(3)

(19)

whereK(x) = c/[π(x2 + c2)] and τ(x, h) = (h cosx − h2)/(1− 2h cosx + h2). Here
the charge and spin pseudo-Fermi-momentaQ andB, respectively, are determined by the
conditions ∫ Q

−Q
dk ρ(k) = (2N + 1)/L̃ (20)∫ B

−B
d3σ(3) = (2M + 1)/L̃. (21)

Since we have to determine the densities of order 1/L̃, we may expandρ(k) andσ(3)
as

ρ(k) = ρ0(k)+ ρ1(k)/L̃+O(1/L̃2) (22)

σ(3) = σ0(3)+ σ1(3)/L̃+O(1/L̃2). (23)
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For example, we can easily derive the ground-state densitiesρ
(g)

0 (k) andσ (g)0 (3) of order
O(L̃0). In the ground state there are no holes. Also, in the half-filling case, we seeQ = π
andB = ∞ for order O(L̃0). Then we can solve equations (18) and (19)

ρ
(g)

0 (k) = 1

π
+ cosk

2π

∫ ∞
−∞

dp
J0(p) e−ip sink−c|p|/2

cosh(cp/2)
(24)

σ
(g)

0 (3) = 1

2π

∫ ∞
−∞

dp
J0(p) e−ip3

cosh(cp/2)
(25)

whereJ0(p) is the zeroth-order Bessel function.
To determine the boundaryS-matrices for the open Hubbard chain, we now proceed to

study the excitations which are classified bySz andηz eigenvalues. HereSz (respectively
ηz) denotes the totalz-component of spins (respectivelyη-spins). We will consider the spin
and charge excitations separately.

Spin excitation
We consider the spin excitations. We first investigate the state withS = 1, Sz = 1. From this
excitation, we can determine the componentA(3, h) of the boundaryS-matrixKspin(3, h).

The S = 1, Sz = 1 state is obtained byM → N/2− 1 with N fixed. In this case
Imax = N −M = N/2+ 1. Thus there are two holesI h

1 , I
h
2 in the I -sequence, and the

n-sequence do not change. We denote the corresponding spin rapidities3h
α (α = 1, 2), that

is, I h
α = zs(3h

α). The hole densities are thus given by

ρh(k) = 0 (26)

σ h(3) = 1

L̃
[δ(3−3h

1)+ δ(3+3h
1)+ δ(3−3h

2)+ δ(3+3h
2)]. (27)

Then we obtain the integral equations for pairs(ρ0(k), σ0(3)) and (ρ1(k), σ1(3)) with
integration boundariesQ andB which are defined by equations (20) and (21). Since we
determine the densities of order O(1/L̃), the shifts of the integration boundaries from the
ground state must be examined of order O(1/L̃). Following [1, 2, 10], we assume that, in the
thermodynamic limit, the shifts of the integration boundaries are of order O(1/L̃n)(n > 2)
as far as the boundary phase shifts are concerned. Under this assumption, integral equations
can be solved. We then obtainρ0(k) = ρ(g)0 (k), σ0(3) = σ (g)0 (3) and

ρ1(k) = −cosk

2c

{
1

cosh[π(sink −3h
1)/c]

+ 1

cosh[π(sink +3h
1)/c]

+ 1

cosh[π(sink −3h
2)/c]

+ 1

cosh[π(sink +3h
2)/c]

}
+cosk

4π2

∫ ∞
−∞

dp
∫ π

−π
dk′ [τ(k′, h1)+ τ(k′, hL)] e−2 ip(sink−sink′)−c|p|

cosh(cp)

+cosk

2π

∫ ∞
−∞

dp
e−ip sink−c|p|/2

1+ ec|p|
+ 1

2π
[τ(k, h1)+τ(k, hL)] − 2 coskK(2 sink)

(28)

σ1(3) = − 1

π

∫ ∞
−∞

dp[cos(p3h
1)+ cos(p3h

2)]
e−ip3

1+ e−c|p|

+ 1

4πc

∫ π

−π
dk

τ(k, h1)+ τ(k, hL)
cosh[π(sink −3)/c] +

1

2π

∫ ∞
−∞

dp
e−ip3−c|p|

1+ e−c|p|
. (29)
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From the above formulae, we can obtain the following equation for the counting function
zs(3) in the thermodynamic limit:

−2πzs(3
h
1) = 2L̃ps(3

h
1)+N1(3

h
1)+N2(3

h
1,3

h
2) ≡ 0(mod 2π) (30)

whereps(3h
1) is defined by the expression for the spinon momentum of the corresponding

periodic system [5, 11, 12]:

ps(3
h
1) = −

∫ ∞
0

dp

p

J0(p)

cosh(cp/2)
sin(p3h

1). (31)

The termsN1(3
h
1) andN2(3

h
1,3

h
2) in (30) are given by

N1(3
h
1) = γ (−23h

1/c)+ γ (−3h
1/c)−

1

2π

∫ π

−π
dk[τ(k, h1)+ τ(k, hL)]

×φ(−i(3h
1− sink)/c, 1/4+ i(3h

1− sink)/2c) (32)

N2(3
h
1,3

h
2) = γ (−(3h

1−3h
2)/c)+ γ (−(3h

1+3h
2)/c) (33)

where

φ(x, y) = i
∫ ∞

0

dω

ω

(1− e−2xω) e−2yω

1+ e−ω

= i ln
0(x + y + 1/2)0(y)

0(x + y)0(y + 1/2)
(34)

γ (x) = −φ(ix, (1− ix)/2)

= i ln
0((1− ix)/2)0(1+ ix/2)

0((1+ ix)/2)0(1− ix/2)
. (35)

We see thatN2(3
h
1,3

h
2) are the bulk phase shifts due to the scatterings of particle 1 and

2, and also particle 1 and the mirror image of particle 2. Similarly, we can conclude that
N1(3

h
1) is the sum of boundary phase shifts for the scattering of particle 1 off boundaries

with boundary fieldsh1 and h2. That is,N1(3) = a(3, h1) + a(3, h2). Therefore we
determineA(3, h) up to the rapidity independent constant.

To calculate the componentB(3, h) in equation (10), we next consider the state with
S = 1, Sz = −1. We find that, for this spin-SU(2) invariant case, the Bethe ansatz equations
and energy spectrum of theS = 1, Sz = −1 state are trivially the same as those for the
S = 1, Sz = 1 state. Thus we haveA(3, h) = B(3, h).

Charge excitation
Next we consider the charge excitations. To determine the two components of the boundary
S-matrix for the charge excitations, we must consider theη = 1, ηz = 1 state and the
η = 1, ηz = −1 state by the Bethe ansatz.

The η = 1, ηz = −1 state is obtained by removing twok’s from the ground state, i.e.,
N = L− 2 andM = N/2. In this case, we have

σ h(3) = 0 (36)

ρh(k) = 1

L̃
[δ(k − kh

1)+ δ(k + kh
1)+ δ(k − kh

2)+ δ(k + kh
2)]. (37)

Similar to the case of the spin excitation, under the assumption for the integration boundaries,
we obtain the densitiesσ0(3), ρ0(k), σ1(3) andρ1(k). Results areρ0(k) = ρ(g)0 (k), σ0(3) =
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σ
(g)

0 (3) and

ρ1(k) = −L̃ρh(k)− cosk

2π

∫ ∞
−∞

dp[cos(p sinkh
1)+ cos(p sinkh

2)]
e−c|p|/2

cosh(cp/2)

+cosk

8π2

∫ ∞
−∞

dp
∫ π

−π
dk′[τ(k′, h1)+ τ(k′, hL)] e−ip(sink−sink′)−c|p|

cosh(cp/2)

+cosk

2π

∫ ∞
−∞

dp
e−ip sink−c|p|/2

1+ ec|p|
+ 1

2π
[τ(k, h1)+ τ(k, hL)] (38)

σ1(3) = − 1

2c

{
1

cosh[π(3− sinkh
1)/c]

+ 1

cosh[π(3+ sinkh
1)/c]

+ 1

cosh[π(3− sinkh
2)/c]

+ 1

cosh[π(3+ sinkh
2)/c]

}
+ 1

4πc

∫ π

−π
dk

τ(k, h1)+ τ(k, hL)
cosh[π(sink −3)/c] +

1

2π

∫ ∞
−∞

dp
e−ip3

1+ ec|p|
. (39)

Also, we have the counting function in the thermodynamic limit

−2πzc(k
h
1) = 2L̃pηz=−1

c (kh
1)+M1(k

h
1)+M2(k

h
1, k

h
2) ≡ 0(mod 2π) (40)

where pηz=−1
c (kh

1) is the quasiparticle momentum of the corresponding periodic system
[5, 11, 12]

pηz=−1
c (kh

1) = −kh
1 −

∫ ∞
0

dp

p

J0(p) e−cp/2

cosh(cp/2)
sin(p sinkh

1) (41)

and

M1(k
h
1) = γ (−2 sinkh

1/c)− 2kh
1 −

1

i
[ln β(kh

1, h1)+ lnβ(kh
1, hL)]

−φ(i sinkh
1/c, 3/4− i sinkh

1/c)−2(2 sinkh
1)

− 1

2π

∫ π

−π
dk′[τ(k′, h1)+ τ(k′, hL)]γ (−(sink′ − sinkh

1)/c) (42)

M2(k
h
1, k

h
2) = γ (−(sinkh

1 − sinkh
2)/c)+ γ (−(sinkh

1 + sinkh
2)/c). (43)

Then, we can determine the componentD(k, h) fromM1(k
h
1).

Finally, we have to determine the remaining componentC(k, h) in (11). Let us study
theη = 1, ηz = 1 state to determineC(k, h). Since theη = 1, ηz = 1 state is not the regular
Bethe ansatz state [4], we must take the completely-filled state|�〉 = ∏L

j=1ψ
†
j↑ψ

†
j↓|0〉 as

the Bethe ansatz vacuum. The Bethe ansatz state with 2L−N electrons is thus given as

|8N 〉 =
∑

σ1,...,σN∈{↑,↓}
8σ1,...,σN (n1, . . . , nN)

N∏
i=1

ψniσi |�〉 (44)

where theni denotes the location of electrons on the chain. It is easy to see that the
eigenvalue of the HamiltonianH(+) for this state is given byE′N = −EN , and the Bethe
ansatz equations are obtained by takingc→−c in equations (3) and (4). Then the problem
reduces to finding the eigenstates of the attractive Hubbard model with the eigenvalues which
are given by changing those signs from the corresponding eigenvalues for the repulsive case.
That is, the ground-state configuration of rapidities for our model is identical to the highest
energy configuration of rapidities for the attractive case. This is the configuration that all
rapidities are real andN = L,M = N/2 [13]. Therefore, theη = 1, ηz = 1 state is obtained
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by removing twok’s from the ground-state configuration. Repeating the calculation similar
to the case of theη = 1, ηz = −1 state, we have

2πzc(k
h
1) = 2L̃pηz=1

c (kh
1)+M′1(kh

1)+M′2(kh
1, k

h
2) ≡ 0(mod 2π) (45)

wherepηz=1
c (kh

1) is the quasiparticle momentum (note thatp
ηz=1
c is different topηz=−1

c )

pηz=1
c (kh

1) = kh
1 −

∫ ∞
0

dp

p

J0(p) e−cp/2

cosh(cp/2)
sin(p sinkh

1) (46)

and

M′1(kh
1) = γ (−2 sinkh

1/c)+ 2kh
1 +

1

i
[ln β(kh

1, h1)+ lnβ(kh
1, hL)]

−φ(i sinkh
1/c, 3/4− i sinkh

1/2c)−2(2 sinkh
1)

− 1

2π

∫ π

−π
dk′[τ(k′, h1)+ τ(k′, hL)]γ (−(sink′ − sinkh

1)/c) (47)

M′2(kh
1, k

h
2) = γ (−(sinkh

1 − sinkh
2)/c)+ γ (−(sinkh

1 + sinkh
2)/c). (48)

As for the case of theη = 1, ηz = −1 state, we obtain the componentC(k, h) from
M1(k

h
1).

BoundaryS-matrices
Now let us summarize the results. Up to rapidity-independent phase factors, the resulting
boundaryS-matrices are expressed as

Kspin(3, h) = eXs (3,h)
(

1 0
0 1

)
(49)

Kcharge(k, h) = eXc(k,h)
(
β(k, h) 0

0 β(k, h)−1

)
(50)

where

2Xs(3, h) = γ (−23/c)+ γ (−3/c)
− 1

π

∫ π

−π
dk τ(k, h)φ(−i(3− sink)/c, 1/4+ i(3− sink)/2c) (51)

2Xc(k, h) = γ (−2 sink/c)− φ(i sink/c, 3/4− i sink/2c)−2(2 sink)

− 1

π

∫ π

−π
dk′ τ(k′, h)γ (−(sink′ − sink)/c). (52)

It is worth noting that, in contrast to the case of the open supersymmetrict-J model
[2], the boundaryS-matrix for the spin excitations depends on the boundary field although
the boundary field does not break the spin-SU(2) symmetry.

If the boundary fields vanish, the boundaryS-matix of the charge excitations becomes
proportional to the identity matrix as expected. The bulkS-matrices for the Hubbard chain
[5, 11] and the supersymmetrict-J model [2] have the same form as that for theXXX
chain. However, the boundaryS-matrix for the open Hubbard chain has different form
with the one for the openXXX model. Full details and applications of our results will be
published elsewhere.

I wish to thank Dr T Yamamoto for discussions and comments. I am also indebted to
Professor A Kuniba for discussions.
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