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Abstract. Using the method introduced by Grisagtial, boundaryS-matrices for the physical
excitations of the open Hubbard chain with boundary fields are studied. In contrast to the open
supersymmetria-J model, the boundarys-matrix for the charge excitations depend on the
boundary fields though the boundary fields do not break the $pif2) symmetry.

Recently, one-dimensional integrable mod&ith boundarieshave attracted renewed
interest. Those models provide relevant information for the boundary effects on the one-
dimensional strongly correlated systems. Among others, as for the bulk case, the one-
dimensional Hubbard model with open boundary conditions (open Hubbard chain) plays an
important role in this field.
In this letter, using the method introduced by Grisatwal [1] (see also [2]), we study
the boundaryS-matrix for quasiparticles of the open Hubbard chain with boundary fields.
Let us first recall the known facts about the (open) Hubbard chain. The Hamiltonian of

the open Hubbard chain with boundary fields is givenHy” = Héﬁ{l’f” + ng;jndary where
-1 L

Hyt®” = =" lo¥iiae + ¥ 0, ¥i0) + U Y (njy — 1/, — 1/2) @)
j=lo=1 j=1

Héoidndary: —hi(nyy £nyy) —hp(npy £0p). )

HereU is the coupling constant, is the boundary field at sitee {1, L}, ¥, (respectively
t/f}(,) denotes the annihilation (respectively the creation) operator of an electron with spin

oe{t, |}atsitej e{1,2,...,L}, andnj, = wj(,x/fja is the number operator.

It is well known that the bulk Hamiltoniar, %" (on the bipartite lattice, i.e., with
evenlL) possesses afi0(4) = (SU(2) x SU(2))/Z, symmetry [3] (see also [4]). That is,
together with the ordinary spifit/ (2) symmetry which corresponds to the spin degrees of
freedom, H. %" is also invariant under the action of the so-calledU (2) algebra which
pertains to the charge degrees of freedom. The boundary Hamiltﬂéﬁghaw(respectively

H) ) breaks thep-SU (2) symmetry (respectively the spis¥/(2) symmetry) down to

boundar
U(1). Quasiparticle spectra of the attractive Hubbard model and those of the repulsive

Hubbard model are related by an interchange of the spin and charge degrees of freedom [5].
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Then, in what follows, we restrict attention to the Hamiltonidf” with U > 0 (repulsive
case).

The open Hubbard chain with boundary fields has been solved by the (coordinate)
Bethe ansatz method [6-8]. The Bethe ansatz for this model provides eigenstates of the
Hamiltonian H™) which are parametrized by the two sets of roots (‘rapiditi(el@»’)j.\’:l and
{A,})L,. HereN is the number of electrons and is the number of electrons with down
spin. These roots are subject to the (nested) Bethe ansatz equations,

M (As — sink; —ic/2)(As + sink; +ic/2)

SHERB ks, Bk he) = g (As — Sink; +ic/2)(As + Sink; —ic/2) 3)
Ay = Ay —O(Ay + Ay i) P (A —sink —ic/2(Ay + sink; —ie/2) @
i (Ay — As+ic)(Ay + As +ic) o1 (A, —sink; +ic/2)(A, + sink; +ic/2)
wherej=1,...,N,y=1,...,M, and
c=U/2 (5)
1—he™
B(x, h) = T he (6)

Note that, in this model, the solutions of the Bethe ansatz equations are restricted as
Re(k;), Re(A, )y > 0 andk;, A, # 0. The energy of the model is represented as

N
Ey = —ZZCOSkj. (7)
=1

Next, we shall briefly review the work of Grisamrt al [1]. In [9], Korepin gave a
general method for exactly extracting the bulkmatrix from the Bethe ansatz equations.
Then, generalizing this method, Grisaet al proposed the method for determining the
boundaryS-matrix from the Bethe ansatz equations, and applied this method to the open
Heisenberg chain with boundary magnetic fields [1]. Also, using this method, Essler and
coworkers [2] calculated the boundasymatrices for the open supersymmetrid model
with boundary magnetic fields and those for the open supersymmefrimodel with an
impurity.

An essential ingredient of their method is the following quantization condition [10]
for a system of two particles, which has the internal degrees of freedom, with factorized
scattering on a line of length,

IPOVLS (01 — 0)K1(01, h) S12(01 + 02) K1(61, hp) = 1 (8)

where ¢; is the rapidity of particlej = 1,2, and p(6) is defined by theexpressionfor
the momentum of a particle on the corresponding periodic system. Flet@ — 6,) is
the (bulk) S-matrix for the scattering of particles 1 and 2, akid(61, ) is the boundary
S-matrix of the scattering for particle 1 off a boundary with boundary field Under
appropriate conditions 08;,(0; — 62) and K1(61, k), the equation (8) is equivalent to the
following scalar equation (after taking the logarithm):

2L p(61) + (bulk two-body phase shifts)
+(boundary phase shifts fdr;, andh;) = 0(mod 2t). 9)

Note that, due to the factd$12(61 + 62) in equation (8), the bulk part of the phase shifts
contains the phase shifts for the scattering of particle 1 and the mirror image of particle 2.
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On the other hand, if the system is Bethe ansatz solvable, it is possible to derive another
condition onp(6;) from the counting functionthat is defined by the Bethe ansatz equations.
Then, comparing these two conditions, the boundary phase shifts can be evaluated (up to a
rapidity independent constant) [1].

We now turn to consider the boundary scatterings of the open Hubbard chain. Since for
the open Hubbard chain it is reasonable to consider the length of the systeni.te-lie
then we putL = L + 1 in the discussions of the scatterings.

In this letter, we only consider the case with the bipartite lattice and the half-filled
band, i.e.,L even andN = L. In this case, the elementary excitations of the periodic
Hubbard Hamiltonian transform into the fundamental representationSCaq#) [5, 11].

These elementary excitations are called spinons which carry spin but no charge and
holons/antiholons which carry charge but no spin [5, 11, 12]. The excitation spectrum can be
determined by the scattering of these elementary excitations. In [5, 11], theShubrix

for the periodic Hubbard chain has been determined by using Korepin’s method. This
S-matrix has block diagonal form with respect to the scattering of the spin excitations on
the spin excitations, the spin excitations on the charge excitations, the charge excitations on
the spin excitations and the charge excitations on the charge excitations.

For the open Hubbard chain, the bulk part of the Hamiltonian is 8&8¢4) invariant.

Thus, the elementary excitations are still spinons and holons/antiholons. However, in our
choice of Hamiltonian, the-SU (2) symmetry is broken down t&' (1). Thus the totak-spin

is not a good quantum number. The bounddmmnatrices Kspin(A, #) and Kchargdk, 1)

for spin and charge excitations, respectively, have the following diagonal form, since the
Hamiltonian H¥ has U (1) x U(1) symmetry which corresponds to the preservation of
spinon and holon/antiholon numbers:

A
Kepn(A. 1) = (A( 0" sn h)) (10)
Kchargdk, h) = (C(kd h) 'D(/?, h)) . (11)

Since the boundary Hamiltonian (2) does not break the §pii2) symmetry, we expect
that the boundarys-matrix for the spin excitations is proportional to the identity matrix,
i.e., A(A) = B(A). In fact, we will confirm this fact. Also we define the corresponding
boundary phase shifts by the formulad(A, h) = €*®" B(A, h) = XOM C(k, h) =
g®&h and Dk, h) = €®&M_  From the same argument as was given by Griszral
[1], to determine the above four components, it is sufficient to analyse the highest weight
states and the lowest weight states of the spin (respectively charge) excitatiof with
(respectivelyy = 1). HereS (respectivelyn) denotes the total spin (respectivejyspin)
guantum number. Note that althoughis not a good quantum number, when there exist
boundary fields, we call the states which becoine- 1 states when the boundary fields
vanish,n = 1 states. Note also that, to study the scattering, we can restrict attention to the
states near the ground state, i.e., the states which have a microscopic nhumber of holes in
the real roots.

Let us introduce counting functions for rodis} and{A, } [6-8]. As mentioned above,
for later purposes, we need only the real solutions of the Bethe ansatz equations (3) and
(4). In this case, taking the logarithm of equations (3) and (4), we have

nj = z.(kj) (12)
Iy = Zs(Ay) (13)
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wherez.(k) andz,(A) are counting functions for root;} and{A,}, respectively;

M
ze(k) = 1 [Zki + } InB(k, h1) + } InB(k, hy) — Z O(2sink — 2A;5) + ©(2 sink):|
2r I [ s

(14)

1 N ) M
a(h) = o [ j;N ®(2A — 2sink;) + 8;4 O(A — As) O(A)] (15)
with ©(x) = —2tarr(x/c). In the above expressions, we have used the ‘doubling trick’,
that is, we have puh_s = —As, k_; = —k; andAg, ko = 0. The two sequences of quantum
numbers{nj}j.\’=l and{IJ,}}"f=1 (which we call then-sequence and-sequence, respectively)
take integer values, and label the state of the model. Note that;thehich are defined
modulo Z, take values in the range @ n; < N. Also note that, from the formula
|®(x)| < m, the I, are restricted as & I, < N — M(= Ina. For instance, the ground
state is characterized by = N /2 (spin singlet) and the configuration = j, I, = y.

We shall also introduce the densities of roots and holes. The number of allowed solutions
for the Bethe ansatz equations (3) and (4) in the intervals ¢ dk) and (A, A +dA) are
expressed a&[p(k) + p"(k)]dk and L[o (A) + o"(A)]dA. Herep(k) ando(A) are the
densities of roots (filled solutions), andl(k) anda"(A) are the densities of holes (unfilled
solutions). These are determined by the counting functions as follows:

Llp(k) + p"(k)] = dz. (k) /dk (16)

Llo(A) +0"(A)] = dz,(A)/dA. (17)
Conversely, we can determine the counting functions from the integration of the above
formulae, if we know the explicit form op(k), p"(k), o (A) andoM(A).

In the thermodynamic limitl, — oo with N/L andM /L fixed), we obtain the following
formulae:

B
p(k) + p"(k) = % + 2cosk/ dA o (A)K (2sink — 2A)
—-B

et ny) + o np] - 2% k@sink (18)
L L

Qo B
o(A) + o) = 2f dk p(k)K (2A — 2 sink) — / dA o (AYK (A — A') + %K(A)
-0 —B

(19)

where K (x) = ¢/[n(x? + ¢®)] and t(x, h) = (hcosx — h?)/(1 — 2h cosx + h?). Here
the charge and spin pseudo-Fermi-momefitand B, respectively, are determined by the
conditions

0]
/ dk p(k) = (2N +1)/L (20)
Y

B
/ dAo(A) = (2M +1)/L. (21)
—B
Since we have to determine the densities of orddr, ve may expang (k) ando (A)
as

p(k) = po(k) + p1(k)/L + O(1/L?) (22)
o (A) = og(A) + 01(A)/L 4+ O(1/L?). (23)
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For example, we can easily derive the ground-state dengiffé&) ando *(A) of order
O(L%. In the ground state there are no holes. Also, in the half-filling case, w@seer
and B = oo for order QL°. Then we can solve equations (18) and (19)

cosk 00 JO(P) e—ipsink—c\p\/Z

1
(&) _ -
po (k) = b4 + 2t J_w P coshep/2) (24)
(© _i/‘” Jo(p) e'PA
% (M=o oo dp coshcp/2) (25)

where Jo(p) is the zeroth-order Bessel function.

To determine the boundat§-matrices for the open Hubbard chain, we now proceed to
study the excitations which are classified Byandn, eigenvalues. Herd, (respectively
n.) denotes the total-component of spins (respectivelyspins). We will consider the spin
and charge excitations separately.

Spin excitation

We consider the spin excitations. We first investigate the stateSwithl, S, = 1. From this

excitation, we can determine the compongit\, ) of the boundarys-matrix Kspin(A, 7).
The § = 1,5, = 1 state is obtained by — N/2 — 1 with N fixed. In this case

Imax = N — M = N/2+ 1. Thus there are two hole¥, I} in the /-sequence, and the

n-sequence do not change. We denote the corresponding spin rapidjties= 1, 2), that

is, I" = z,(AN). The hole densities are thus given by

p"(k) =0 (26)
1
o"(A) = z[5(1\ —ADFsA+ A FSA—AD+s(A+AD].  @D)

Then we obtain the integral equations for paffg(k), oo(A)) and (p1(k), o1(A)) with
integration boundarie®) and B which are defined by equations (20) and (21). Since we
determine the densities of orderIJL), the shifts of the integration boundaries from the
ground state must be examined of ordeéf@d.). Following [1, 2, 10], we assume that, in the
thermodynamic limit, the shifts of the integration boundaries are of ordéf ) (n > 2)

as far as the boundary phase shifts are concerned. Under this assumption, integral equations
can be solved. We then obtain(k) = o5 (k), oo(A) = o’ (A) and

cosk 1 1
pa(k) = —

2c | coshpr(sink — A /c] + coshfr(sink + Af)/c]

1 1
Jrcosh[zr(sink — ADy/c] + coshfr(sink + A} /c] }

cosk 0 T —2ip(sink—sink’)—c|p|
— d dk' [t (k' h k', h
22 /_oo p - [t(k', hy) + (K, hp)] coshep)
cosk [ e—ipsink—c\pl/Z 1
—_— dp—————— + —[t(k,h k,hr)] — 2coskK (2 sink
Sl B e L QY (N B) (2sink)
(28)
1 [® h h —ipA
o1(A) = T [m dp[cos(pAy) + COS(PAz)]m

1 (7 t(k,hy) +t(k, h 1 [ elra=cl

+—/ () + ok ) +—/ dpr— . (29)
Arc J_,  coshfp(sink — A)/c]  2m J_o = 1+ eclpl
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From the above formulae, we can obtain the following equation for the counting function
z;(A) in the thermodynamic limit:

—2mz (A = 2L p,(AD) + N1 (AT + No(Al, AD) = 0(mod 2r) (30)

whereps(A*l‘) is defined by the expression for the spinon momentum of the corresponding
periodic system [5,11,12]:

hy _ *© dl Jo(p) - h
ps(AD) = / ) 7cosk(cp/2) sin(pA?). (32)

The terms\(Al) and NV2(Af, AY) in (30) are given by

T

1
NAY = 7 (-281/0) + y(=Alye) - / dk{z (k. ho) + (k. )]

xp(—i(AY —sink)/c, 1/4+i(AD — sink)/2¢) (32)
N2(AL AD) = y(—(A] = AD) /o) + v (— (Al + AD) /o) (33)

where

i ® dw (1 — e &) g2y
o, y) = /0 »w  l4+ew®
il F'x+y+1/2T'(y) (34)
Frx+yriy+1/2
y(x) =-—¢(x, (1f ix)/2) _
i D@ = 0/2T A +ix/2). (35)
T((1+ix)/2)0(1—ix/2)

We see that\Va(AD, Ag) are the bulk phase shifts due to the scatterings of particle 1 and
2, and also particle 1 and the mirror image of particle 2. Similarly, we can conclude that
Ni1(AD) is the sum of boundary phase shifts for the scattering of particle 1 off boundaries
with boundary fieldsh; and h,. That is, N1(A) = a(A, h1) + a(A, hy). Therefore we
determineA(A, k) up to the rapidity independent constant.

To calculate the componei(A, /) in equation (10), we next consider the state with
S=1,5 = —1. We find that, for this spirt-U (2) invariant case, the Bethe ansatz equations
and energy spectrum of thg = 1, S, = —1 state are trivially the same as those for the
S =18, =1 state. Thus we havd(A, h) = B(A, h).

Charge excitation
Next we consider the charge excitations. To determine the two components of the boundary
S-matrix for the charge excitations, we must consider the- 1,5, = 1 state and the
n =1, n, = —1 state by the Bethe ansatz.
Then = 1, n, = —1 state is obtained by removing tws from the ground state, i.e.,
N =L —-2andM = N/2. In this case, we have

a"(A)=0 (36)

pMk) = Z[8(k — kD) + 8(k + kD) + 8(k — kD) + 8(k + KD)]. (37)

1
L
Similar to the case of the spin excitation, under the assumption for the integration boundaries,
we obtain the densities(A), po(k), o1(A) andpy (k). Results argo(k) = pf (k), oo(A) =
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os®(A) and
. cosk [ gclrl/2
k)= —Lp"k) — — = dp[cos(p sink!) + cogpsinkD]—
p1(k) p"(k) 57 /W plcos(p sink;) + cos(p 2)]cosr(cp/2)
cosk [ b4 efip(sir‘lkfsir‘lk/)fclpl
— d dk'[t k', h k', h
8,2 /700 P - [T(k', h1) + (k'  hp)] costiep/2)
cosk 00 e—ipsink—c\p|/2 1
ox PW + E[T(k’ h1) + t(k, hp)] (38)
—00

1 1 1

oh) = _Zc{coshﬁf(A —sinkf)/e] " coshix (A + sinkl)/c]

1 1
Jrcoshﬁz(A — sinkd) /c] + coshfr (A + sinkb) /c] }
1 (7 k,h k, h 1 [ ale
L[ gtk ) Tk by *f dp _
drc J_,  coshfp(sink — A)/c]  2n J_o = 1+ ¢€lP!
Also, we have the counting function in the thermodynamic limit

—2m 7.k = 2L pP="2 (kD) + Mk + Mo(kD, k) = 0(mod 2r)  (40)

c

(39)

where p}?z:_l(ki‘) is the quasiparticle momentum of the corresponding periodic system

5,11, 12]

_ * dp Jo(p)e P2 )
n.=—l.hy _ _h __ A h
pr=" M ky)) = —kq [0 » coshep/2) sin(p sink;) (41)
and

1
Mu(ki) = y(=2sinki/c) = 2k = Z[In BT, ha) +In Bk, hi)]

—¢(isinkl/c, 3/4 —isink/c) — © (2 sink)
1

~5. ! dk'[z (K, k) + T(k', hp)]y (—(sink’ — sinkl)/c) (42)

Mo(KD, k) = y (—(sink! — sinkD)/c) 4+ y (—(sink! + sinkd)/c). (43)

Then, we can determine the compon@n, #) from Ml(kg‘).

Finally, we have to determine the remaining compor@&gt /) in (11). Let us study
then = 1, n, = 1 state to determiné(k, ). Since they = 1, n, = 1 state is not the regular
Bethe ansatz state [4], we must take the completely-filled $ate= ]_[J.L:l ijjTUO) as
the Bethe ansatz vacuum. The Bethe ansatz state With & electrons is thus given as

N
D)= > Doy oy1 ) [ [ Ve 1) (44)
i=1

where then; denotes the location of electrons on the chain. It is easy to see that the
eigenvalue of the Hamiltonia#/ ™" for this state is given byz), = —Ey, and the Bethe
ansatz equations are obtained by taking- —c in equations (3) and (4). Then the problem
reduces to finding the eigenstates of the attractive Hubbard model with the eigenvalues which
are given by changing those signs from the corresponding eigenvalues for the repulsive case.
That is, the ground-state configuration of rapidities for our model is identical to the highest
energy configuration of rapidities for the attractive case. This is the configuration that all
rapidities are real an¥ = L, M = N /2 [13]. Therefore, the = 1, n, = 1 state is obtained
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by removing twok’s from the ground-state configuration. Repeating the calculation similar
to the case of the = 1, n, = —1 state, we have

27070 (kY) = 2L p}-=(kY) + MY (k) + MY, kB) = 0 (mod 2r) (45)

WherepZ‘":l(kg‘) is the quasiparticle momentum (note thet=" is different to p<=%)

_ ® dp Jo(p) e r/? .
7];—1 h — h _ s oy h 4
pETH(kY) =k /0 » costep/2) sin(p sink;) (46)

and
MK = y(=2sinkl/c) + 2k + Tl[ln BUD, hy) +1In KD, hp)]
—¢(isink/c, 3/4 — isinkl/2c) — (2 sink!h)

1 i / ’ / H / H h
—2—/ dk'[t(k', h1) + t(k', hp)]y (—(Sink” — sinky)/c) 47
JT -7
M, kD) = y (—(sinkd — sinkD) /c) + y (—(sink! + sinkD) /c). (48)
As for the case of theg = 1,5, = —1 state, we obtain the componentk, ) from

Ma (kD).

BoundaryS-matrices
Now let us summarize the results. Up to rapidity-independent phase factors, the resulting
boundaryS-matrices are expressed as

. _tan (10
Kepin(A, ) = €" (0 1) (49)
_ Xn [ Bk, h) 0
Kcharg&ks h) - eX ( 0 ,B(k, h)l) (50)
where
2X,(A, h) = y(=2A/c) + y(=A/c)
—% dk T (k, h)p (—i(A — sink)/c, 1/4+i(A — sink)/2c) (51)

-7

2X.(k, h) = y(—2sink/c) — ¢(isink/c, 3/4 —isink/2c) — O(2sink)
—% ! dk’ T (k', h)y (—(sink’ — sink)/c). (52)

It is worth noting that, in contrast to the case of the open supersymmefrimodel
[2], the boundaryS-matrix for the spin excitations depends on the boundary field although
the boundary field does not break the spiti{2) symmetry.

If the boundary fields vanish, the boundafymatix of the charge excitations becomes
proportional to the identity matrix as expected. The btHknatrices for the Hubbard chain
[5,11] and the supersymmetric/ model [2] have the same form as that for tHeX X
chain. However, the boundary-matrix for the open Hubbard chain has different form
with the one for the opelX X X model. Full details and applications of our results will be
published elsewhere.

I wish to thank Dr T Yamamoto for discussions and comments. | am also indebted to
Professor A Kuniba for discussions.
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